Nonlinear Dynamics of the Parker Scenario for Coronal Heating

نویسندگان

  • A. F. Rappazzo
  • M. Velli
  • G. Einaudi
چکیده

The Parker or field line tangling model of coronal heating is studied comprehensively via longtime high-resolution simulations of the dynamics of a coronal loop in cartesian geometry within the framework of reduced magnetohydrodynamics (RMHD). Slow photospheric motions induce a Poynting flux which saturates by driving an anisotropic turbulent cascade dominated by magnetic energy. In physical space this corresponds to a magnetic topology where magnetic field lines are barely entangled, nevertheless current sheets (corresponding to the original tangential discontinuities hypothesized by Parker) are continuously formed and dissipated. Current sheets are the result of the nonlinear cascade that transfers energy from the scale of convective motions (∼ 1, 000 km) down to the dissipative scales, where it is finally converted to heat and/or particle acceleration. Current sheets constitute the dissipative structure of the system, and the associated magnetic reconnection gives rise to impulsive “bursty” heating events at the small scales. This picture is consistent with the slender loops observed by state-of-the-art (E)UV and X-ray imagers which, although apparently quiescent, shine bright in these wavelengths with little evidence of entangled features. The different regimes of weak and strong MHD turbulence that develop, and their influence on coronal heating scalings, are shown to depend on the loop parameters, and this dependence is quantitatively characterized. Subject headings: MHD — Sun: corona — Sun: magnetic fields — turbulence

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear wave heating of solar coronal loops

Theheating ofmagnetically closed structures (loops) in the solar corona by the resonant absorption of incident waves is studied by means of numerical simulations in the framework of nonlinear resistive magnetohydrodynamics (MHD). It is shown that the dynamics in the resonant layer is indeed very nonlinear for typical coronal parameters. The effect of the nonlinearity on the efficiency of the re...

متن کامل

Self-regulation of solar coronal heating via the collisionless reconnection condition

I present a novel view on the problem of solar coronal heating. In my picture, coronal heating should be viewed as a self-regulating process that works to keep the coronal plasma marginally collisionless. The self-regulating mechanism is based on the interplay between two effects: (1) Plasma density controls coronal energy release via the transition between the slow collisional Sweet-Parker reg...

متن کامل

The Coronal Heating Paradox

The ‘‘coronal heating problem’’ has been with us over 60 years, and hundreds of theoretical models have been proposed without an obvious solution in sight. In this paper we point out that observations show no evidence for local heating in the solar corona, but rather for heating below the corona in the transition region and upper chromosphere, with subsequent chromospheric evaporation as known ...

متن کامل

Fast Collisionless Reconnection Condition and Self-organization of Solar Coronal Heating

I propose that solar coronal heating is a self-regulating process that keeps the coronal plasma roughly marginally collisionless. The self-regulating mechanism is based on the interplay of two effects. First, plasma density controls coronal energy release via the transition between the slow collisional Sweet– Parker regime and the fast collisionless reconnection regime. This transition takes pl...

متن کامل

Ëëðð¹êêêùððøøóò Óó Ëóððö Óöóòòð Àààøøòò Úúú Øøø Óððð××óòðð×× Êê Blockinóòòò Blockinøøóò Óòòòøøóò

I present a novel view on the problem of solar coronal heating. In my picture, coronal heating should be viewed as a self-regulating process that works to keep the coronal plasma marginally collisionless. The self-regulating mechanism is based on the interplay between two effects: (1) Plasma density controls coronal energy release via the transition between the slow collisional Sweet-Parker reg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008